Interpolation Problems of A. F. Leontiev Type

نویسندگان

چکیده

In this paper, we discuss free interpolation in the spaces of entire and analytic finite-order functions upper half-plane. A review problems basic results related to such is given. Solvability criteria are formulated terms canonical products nodes measure determined by these nodes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Problems of Interpolation Theory

We consider problems where one seeks m×m matrix valued H∞ functions w(ξ) which satisfy interpolation constraints and a bound (0.1) w∗(ξ)w(ξ) ≤ ρmin, |ξ| < 1, where the m×m positive semi-definite matrix ρmin is minimal (no smaller than) any other matrix ρ producing such a bound. That is, if (0.2) w∗(ξ)w(ξ) ≤ ρ, |ξ| < 1, and if ρmin − ρ is positive semi-definite, then ρmin = ρ. This is an example...

متن کامل

F-X Adaptive Seismic Trace Interpolation

Exponentially Weighted Recursive Least Squares (EWRLS) is adopted to estimate adaptive prediction filters for f-x seismic interpolation. Adaptive prediction filters are able to model signals where the dominant wavenumbers are varying in space. This concept leads to a f-x interpolation method that does not require windowing strategies for optimal results. In other words, adaptive prediction filt...

متن کامل

Interpolation theory and shell problems

The shell problem and its asymptotic are investigated. A connection between the asymptotic behavior of the shell energy and real Interpolation Theory is established. Although only the Koiter shells have been considered, the same procedure can be used for other models, such as Naghdi’s one, for example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2021

ISSN: ['1072-3374', '1573-8795']

DOI: https://doi.org/10.1007/s10958-020-05168-3